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Abstract

This study deals with the onset of thermal natural convection in a system consisting of a fluid layer overlying a homogeneous porous
medium. A linear stability analysis is carried out, using the so-called two-domain approach and including the Brinkman term in the por-
ous region (2XDB). Results are systematically compared to those obtained using the one-domain approach (1X) and the classical Darcy
formulation of the two-domain approach (2XD). A better agreement is found between the 2XDB and 2XD neutral curves, than with the 1X
curves, indicating that the inclusion of the Brinkman term plays a secondary role on the stability results. The different treatment of the
interfacial region is discussed on the basis of these results.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Convective heat and species transport at the interface
between a fluid and a porous region can be encountered
in numerous industrial processes (solidification, filtration,
catalytic reactor, drying, . . .) or environmental situations
(geothermal systems, ground water pollution, . . .) and
therefore, transport phenomena analysis in such configura-
tions has been the subject of particular attention in the last
decades [1]. Nevertheless, one of the fundamental open
questions concerns the modelling of the fluid/porous inter-
face and its consequences on transport phenomena. Two
different formulations are generally adopted. In the one-
domain approach, the porous layer is considered as a
pseudo fluid and the whole cavity as a continuum [2]. In
this case, heat and mass transfer is governed by a unique
set of conservation equations valid in both the fluid and
porous regions thus avoiding the explicit formulation of
boundary conditions at the interface. In the two-domain
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approach, conservation equations in the fluid and in the
porous region are coupled by the appropriate set of inter-
facial conditions. For momentum transport, these condi-
tions mainly depend on the order of the momentum
equation in the porous medium whose choice has been
widely commented since the pioneering study by Beavers
and Joseph [3]. In this study, Beavers and Joseph consid-
ered a one-dimensional flow parallel to the fluid/porous
interface. Since the flows in the fluid and porous layers
are described by the Stokes and Darcy equations, respec-
tively, a semi-empirical slip boundary condition was
proposed at the interface

ou
oz

����
z¼int

¼ affiffiffiffi
K
p ðuint � UÞ ð1Þ

where uint is the fluid velocity at the interface, U is the seep-
age velocity, K is the permeability of the homogeneous
porous material and a is an empirical dimensionless slip
coefficient. The agreement between the experimental data
provided in [3] and the analytical solution is obtained by
adjusting the values of a between 0.1 and 4, depending
on the nature of the porous layer. This parameter has been
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Nomenclature

d�f thickness of the fluid layer, m
d�m thickness of the porous layer, m
d� total thickness ðd� ¼ d�f þ d�mÞ, m
d̂ depth ratio ðd̂ ¼ d�f =d�mÞ
Da Darcy number ðDa ¼ K=d�2Þ
g gravity constant, m s�2

GrT Grashof number ðGrT ¼ gbTDT �d�3=m2Þ
K permeability of the porous medium, m2

k thermal conductivity, W m�1 K�1

Nh truncation order of the temperature expansion
NW truncation order of the velocity expansion
Pr Prandtl number ðPr ¼ m=aTÞ
RaT Rayleigh number ðRaT ¼ GrTPrDaÞ
RaTf fluid Rayleigh number ðRaTf ¼ RaT=DaÞ
RaTm porous Rayleigh number ðRaTm ¼ RaTeTÞ
T �l temperature of the lower boundary, K
T �u temperature of the upper boundary, K

Greek symbols

a slip coefficient
aT thermal diffusivity (aTf ¼ kf=ðq0CpÞf ,

aTm ¼ km=ðq0CpÞf ), m2 s�1

bT thermal expansion coefficient, K�1

bh temperature eigenvalue
d dimensionless parameter (d2 ¼ ð1þ d̂Þ2Da)

eT thermal diffusivity ratio (eT ¼ aTf=aTm)
g reduced viscosity (g ¼ leff=l)
j dimensionless wave number
li velocity eigenvalue
l dynamic viscosity of the fluid, kg m�1 s�1

leff effective viscosity of the porous medium,
kg m�1 s�1

m kinematic viscosity of the fluid, m2 s�1

q fluid density, kg m�3

r growth rate
/ porosity
~wh1 temperature eigenfunction for the fluid layer
~wh2 temperature eigenfunction for the porous layer
~wW 1 velocity eigenfunction for the fluid layer
~wW 2 velocity eigenfunction for the porous layer

Subscripts

0 reference
f fluid property
m porous medium property

Superscript

� dimensional quantity
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found to be strongly dependent on the structure of the por-
ous interface, but not on the nature of the fluid. Nield [4]
was the first to use the slip condition in the stability anal-
ysis of superposed fluid and porous layers. Poulikakos
et al. [5] also reported a numerical study of high Rayleigh
number convection in superposed layers, using the Beavers
and Joseph condition. A generalization of the slip condi-
tion for multidirectional flows was proposed by Jones [6].
An interesting comparison between the linear stability re-
sults obtained using both the Beavers and Joseph and the
generalized Jones condition is shown in [7].

An alternative solution to the problem of matching the
flow equations in the two regions is to use the Brinkman
correction to the Darcy law [8]. Therefore, momentum
equations in both regions are of the same differential order
and continuity of both velocity and shear stress can be sat-
isfied. In this case, Neale and Nader [9] have shown that the
analytical solution is equivalent to the solution of Beavers
and Joseph [3] if a ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
leff=l

p
(leff being the effective viscos-

ity involved in the Brinkman term).
Finally, when important spatial variations of the porous

structure are present at the fluid/porous inter-region, a
macroscopic stress jump boundary condition has been
derived in the context of volume averaging [10,11]. This
representation, based on the Darcy–Brinkman momentum
equation, involves an adjustable stress jump coefficient
which has been found to be explicitly dependent on the
continuous spatial variations of the effective properties at
the inter-region [12,13].

A large majority of studies on linear stability analysis for
the onset of thermal convection in superposed fluid and
porous layers have been performed using a two-domain
approach with the Darcy equation for the momentum
transport in the porous region [4,14–17]. The first stability
analysis based on the one-domain modelling in this strati-
fied configuration has been proposed by Zhao and Chen
[18]. The comparison between their results and those
obtained with the two-domain approach [15] shows a qual-
itative agreement of the marginal stability curves, while the
critical values of the Rayleigh number may significantly
differ (up to 40%). Up to now, no comparison of the stabil-
ity results using the two-domain approach and the Darcy–
Brinkman formulation in the porous layer was provided.

The only comparison between the one- and two-domain
approaches, both including viscous diffusion, have been
performed in the context of direct numerical simulations
in the configuration studied by Beavers and Joseph [12] or
recently for a corner flow [19]. In both cases, it was shown
that the two modelling approaches produce similar results.
For a corner flow, the finite-element simulations based on
the one-domain formulation are also found to be in good
agreement with the similarity solution of [20].
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The objective of this paper is to develop a linear stability
analysis of thermal convection in superposed fluid and
homogeneous porous layers using the two-domain
Darcy–Brinkman modelling (2XDB) and to compare the
results obtained with the one-domain approach (1X) [21]
and the classical Darcy’s two-domain formulation (2XD)
for different slip coefficients [16]. The paper is organized
as follows. First, the stability analysis using the two-
domain Darcy–Brinkman modelling (2XDB) is developed
(Sections 2.1 and 2.2). The Generalized Integral Transform
Technique (GITT) solution of the eigenvalue problem is
detailed in Section 2.3. Then, the stability analysis using
the one-domain approach formulation (1X) is briefly
recalled (Section 3). Finally, the numerical results for the
three formulations are compared in Section 4. It is shown
that the marginal stability curves for 2XDB present a good
agreement with those obtained using 2XD, especially for
high a values. For small Darcy values, important discrep-
ancies are found with the 1X model. A detailed analysis
of the interfacial boundary conditions shows the crucial
role of the continuity of normal stress condition on the
stability curves.

2. The two-domain approach (2XDB)

The system under consideration consists of a horizontal
porous layer of thickness d�m underlying a fluid layer of
thickness d�f , with a total thickness d� ¼ d�m þ d�f , as shown
in Fig. 1. The upper and lower walls are impermeable and
are kept at temperatures T �u and T �l , respectively. The por-
ous medium is saturated by the same fluid which fills the
rest of the domain, and is supposed to be in thermal equi-
librium with the fluid. The fluid is assumed to be Newto-
nian and to satisfy the Boussinesq approximation:

qðT �Þ ¼ q0ð1� bTðT � � T �0ÞÞ ð2Þ
2.1. Governing equations

Let us now develop the linear stability analysis of ther-
mal convection in the system described above, using the
two-domain Darcy–Brinkman modelling. As previously
said, the Darcy–Brinkman formulation is different from
that of [15,16], since viscous diffusion is included in the
momentum equation for the porous medium.
Fig. 1. Geometric configuration of the problem.
The conservation equations for the fluid layer are given
by

r � u� ¼ 0 ð3Þ

q0

ou�

ot�
þ ðu� � ru�Þ

� �
¼ �rP � þ lr2u�

� q0gð1� bTðT � � T �0ÞÞez ð4Þ
oT �

ot�
þ u� � rT � ¼ r � ðaTfrT �Þ ð5Þ

While the equations for the porous layer take the form:

r � u�m ¼ 0 ð6Þ
q0

/
ou�m
ot�
¼ �rP �m �

l
K

u�m þ leffr2u�m

� q0gð1� bTðT �m � T �0ÞÞez ð7Þ
ðq0CpÞm
ðq0CpÞf

oT �m
ot�
þ u�m � rT �m ¼ r � ðaTmrT �mÞ ð8Þ

In Eq. (7), the viscous diffusion term involves the effective
viscosity. According to Whitaker [22], the reduced viscosity
can be taken as g ¼ leff=l ¼ 1=/.

The boundary conditions at the upper boundary z ¼ d�

are: T � ¼ T �u, u� ¼ 0, and at the lower boundary z = 0 are:
T �m ¼ T �l , u�m ¼ 0. At the interface z ¼ d�m, continuity of
temperature, heat flux, velocity, normal stress and tangen-
tial stress are imposed:

T � ¼ T �m ð9Þ

kf

oT �

oz
¼ km

oT �m
oz

ð10Þ

u� ¼ u�m ð11Þ

� P � þ 2l
ow�

oz
¼ �P �m þ 2leff

ow�m
oz

ð12Þ

l
ou�

oz
¼ leff

ou�m
oz

ð13Þ

It is important to remark that, when using the Darcy equa-
tion, the continuity of normal stress does not include the
viscous contribution in the porous region, and the continu-
ity of tangential stress is substituted by the Beavers and
Joseph boundary condition (Eq. (1)).

In order to make the equations nondimensional, the
following dimensionless variables are introduced:
x ¼ x�=d�, z ¼ z�=d�, t ¼ t�m=d�2, u ¼ u�d�=m, w ¼ w�d�=m,
P ¼ P �d�2=ðq0m

2Þ, and T ¼ ðT � � T �0Þ=DT �, where DT � ¼
T �u� T �l . The dimensionless equations for the fluid layer are

r � u ¼ 0 ð14Þ
ou

ot
þ u � ru ¼ �rP þr2u� g

d3

m2
ð1� bTðDT �T ÞÞez ð15Þ

oT
ot
þ u � rT ¼ 1

Prf

r2T ð16Þ

while assuming that the porous medium is isotropic and
homogeneous, the dimensionless equations for the porous
layer can be written as
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r � um ¼ 0 ð17Þ
1

/
oum

ot
¼ �rP m þ

1

Da
um þ gr2um � g

d3

m2
ð1� bTðDT �T mÞÞez

ð18Þ
ðq0CpÞm
ðq0CpÞf

oT m

ot
þ um � rT m ¼

1

Prm

r2T m ð19Þ

The nondimensional boundary conditions at the the top
and bottom walls are:

T ð1Þ ¼ T �u � T �0
DT �

; uð1Þ ¼ 0

T mð0Þ ¼
T �l � T �0

DT �
; umð0Þ ¼ 0

ð20Þ

At the interface z ¼ d�m=d� ¼ dm ¼ 1=ð1þ d̂Þ the dimen-
sionless boundary conditions take the form:

T ¼ T m ð21Þ
oT
oz
¼ 1

eT

oT m

oz
ð22Þ

u ¼ um ð23Þ

� P þ 2
ow
oz
¼ �P m þ 2g

owm

oz
ð24Þ

ou
oz
¼ g

oum

oz
ð25Þ
2.2. Linear stability analysis

In order to derive the perturbation equations, we impose
perturbations to the basic solution of the dependent
variables:

f ¼ fðzÞ þ f0ðx; z; tÞ ð26Þ
where the overlined quantities represent the basic state and
the primes denote the perturbation profiles. The steady
basic state is supposed to be quiescent: �uðzÞ ¼ �wðzÞ ¼ 0 and
o/ot = 0. The equations are linearized in the usual manner.

Using Eq. (26) in Eq. (15), and eliminating the products
of perturbed quantities, we obtain for the momentum con-
servation in the fluid layer:

ou0

ot
¼ �rðP þ P 0Þ þ r2u0 � g

d3

m2
ð1� bTDT �ðT þ T 0ÞÞez

ð27Þ
In order to eliminate the pressure term, the above equation
is operated with ($ � $�). Applying continuity, the z-com-
ponent of Eq. (27) becomes:

o

ot
�r2

� �
r2w0 ¼ GrTr2

2T 0 ð28Þ

where r2
2 ¼ o

2=ox2 in two dimensions and r2
2 ¼

o
2=ox2 þ o

2=oy2 in three dimensions.
Similarly, using Eq. (26) in Eq. (16), and eliminating the

products of perturbed quantities gives:

oT 0

ot
þ oT

oz
w0 ¼ 1

Prf

r2T 0 ð29Þ
Eqs. (28) and (29) are the set of perturbation equations for
the fluid layer. Proceeding in the same manner, the pertur-
bation equations for the porous layer can be written as

1

/
o

ot
� gr2

� �
r2w0m þ

1

Da
r2w0m ¼ GrTr2

2T 0m ð30Þ

ðq0CpÞm
ðq0CpÞf

oT 0m
ot
þ oT m

oz
w0m ¼

1

Prm

r2T 0m ð31Þ

The boundary conditions on the external walls are:

T 0ð1Þ ¼ 0; w0ð1Þ ¼ 0;
ow0ð1Þ

oz
¼ 0;

T 0mð0Þ ¼ 0; w0mð0Þ ¼ 0;
ow0mð0Þ

oz
¼ 0:

ð32Þ

Making use of the continuity equations for the fluid and
the porous regions, the boundary conditions at the inter-
face z = dm become:

T 0 ¼ T 0m ð33Þ
oT 0

oz
¼ 1

eT

oT 0m
oz

ð34Þ

w0 ¼ w0m ð35Þ
ow0

oz
¼ ow0m

oz
ð36Þ

ðP þ P 0Þ � 2
ow0

oz
¼ ðP m þ P 0mÞ � 2g

ow0m
oz

ð37Þ

o2w0

oz2
¼ g

o2w0m
oz2

ð38Þ

Let us now apply the normal mode expansion to the
dependent variables:

ðw0; T 0Þ ¼ ðW ðzÞ; hðzÞÞf ðxÞert ð39Þ
where r2

2f þ j2f ¼ 0. The separation constant j is the
nondimensional horizontal wave number. We assume that
the principle of exchange of instabilities holds, and the on-
set of instability is in the form of steady convection (r = 0).
This assumption was checked in [16] and found to be true
in every computational run. Introducing Eq. (39) into Eqs.
(28)–(31) gives

d4W
dz4
� 2j2 d2W

dz2
þ j4W ¼ j2GrTh ð40Þ

d2h
dz2
� j2h ¼ 1þ d̂

d̂ þ eT

PrfW ð41Þ

g
d4W m

dz4
� 2gj2 þ 1

Da

� �
d2W m

dz2
þ gj4 þ j2 1

Da

� �
W m

¼ j2GrThm ð42Þ
d2hm

dz2
� j2hm ¼ eT

1þ d̂

d̂ þ eT

PrmW m ð43Þ

The outer boundary conditions take the form

hð1Þ ¼ 0; W ð1Þ ¼ 0;
dW ð1Þ

dz
¼ 0

hmð0Þ ¼ 0; W mð0Þ ¼ 0;
dW mð0Þ

dz
¼ 0

ð44Þ
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while at the interface the boundary conditions can be writ-
ten as

h ¼ hm ð45Þ
dh
dz
¼ 1

eT

dhm

dz
ð46Þ

W ¼ W m ð47Þ
dW
dz
¼ dW m

dz
ð48Þ

� d3W
dz3
þ 3j2 dW

dz
¼ 1

Da
dW m

dz
� g

d3W m

dz3
� 3j2 dW m

dz

� �
ð49Þ

d2W
dz2
¼ g

d2W m

dz2
ð50Þ
2.3. Solution method – GITT

The system of homogeneous Eqs. (40)–(50) constitutes
an eigenvalue problem in GrT. The GITT [23] solution
for this problem is now presented. Following the formalism
in this analytic based approach, in particular applied to
composite media [24], we choose auxiliary eigenvalue prob-
lems for the temperature and velocity fields.

The auxiliary problem for the temperature is:

d2 ~wh1;hðzÞ
dz2

þ b2
h

eT

~wh1;hðzÞ ¼ 0; dm 6 z 6 1 ð51Þ

d2 ~wh2;hðzÞ
dz2

þ b2
h
~wh2;hðzÞ ¼ 0; 0 6 z 6 dm ð52Þ

where

~wh1;hð1Þ ¼ 0; ~wh1;hðdmÞ ¼ ~wh2;hðdmÞ

eT

d~wh1;hðdmÞ
dz

¼ d~wh2;hðdmÞ
dz

; and ~wh2;hð0Þ ¼ 0
ð53Þ

The associated normalized eigenfunctions are:

~wh1;hðzÞ ¼ C1

sin bhffiffiffiffi
eT
p ð1� zÞ
� �

sin bhffiffiffiffi
eT
p ð1� dmÞ
� � ð54Þ

~wh2;hðzÞ ¼ C2

sinðbhzÞ
sinðbhdmÞ

ð55Þ

Boundary conditions (53) provide a system of four linear,
homogeneous equations for the determination of the con-
stants C1 and C2. Nevertheless, since the resulting system
of equations is homogeneous, the constants can be deter-
mined only in terms of any of them (i.e., the nonvanishing
one) or within a multiple of an arbitrary constant. There-
fore, any of the nonvanishing constants can be set equal
to unity without loss of generality. Finally, we require that
the above system has a nontrivial solution. This condition
leads to a transcendental equation for the determination of
the eigenvalues bh. The eigenvalue problem (51)–(53) al-
lows the definition of the following integral transform pair:
�hh ¼
Z 1

dm

~wh1;hðzÞh1ðzÞdzþ
Z dm

0

~wh2;hðzÞh2ðzÞdz ðtransformÞ

ð56Þ

hRðzÞ ¼
X1
h¼1

~whR;hðzÞ�hh ðinverseÞ ð57Þ

where R = 1,2 in the fluid and porous regions, respectively.
In order to find a group of functions to develop the velocity
field, we notice that the usual expansion in terms of trigo-
nometric or Bessel functions is impossible for this problem,
since the boundary conditions in the solid walls require
that W = DW = 0. In this case, the expansion should be
in terms of functions which, together with their first deriv-
atives, are null at the limits of the chosen interval. As pro-
posed in [25], the appropriate auxiliary problem is:

d4 ~wW 1;iðzÞ
dz4

� l4
i
~wW 1;iðzÞ ¼ 0; dm 6 z 6 1 ð58Þ

g
d4 ~wW 2;iðzÞ

dz4
� l4

i
~wW 2;iðzÞ ¼ 0; 0 6 z 6 dm ð59Þ

~wW 1;ið1Þ ¼ 0

d~wW 1;ið1Þ
dz

¼ 0

~wW 1;iðdmÞ ¼ ~wW 2;iðdmÞ
d~wW 1;iðdmÞ

dz
¼ d~wW 2;iðdmÞ

dz
d2 ~wW 1;iðdmÞ

dz2
¼ g

d2 ~wW 2;iðdmÞ
dz2

ð60Þ

d3 ~wW 1;iðdmÞ
dz3

¼ g
d3 ~wW 2;iðdmÞ

dz3

~wW 2;ið0Þ ¼ 0

d~wW 2;ið0Þ
dz

¼ 0

and the associated normalized eigenfunctions are:

~wW 1;iðzÞ ¼ C3e�liz þ C4eliz þ C5 sinðlizÞ þ C6 cosðlizÞ ð61Þ

~wW 2;iðzÞ ¼ C7e
� li

g1=4
z þ C8e

li
g1=4

z þ C9 sin � li

g1=4
z

� �

þ C10 cos � li

g1=4
z

� �
ð62Þ

Constants C3–C10 and the eigenvalues li are determined in
the same way as in the temperature problem. Following the
same procedure, the transformation pair for the momen-
tum problem is defined as

W i ¼
Z 1

dm

~wW 1;iðzÞW 1ðzÞdzþ
Z dm

0

~wW 2;iðzÞW 2ðzÞdz ðtransformÞ

ð63Þ

W RðzÞ ¼
X1
i¼1

~wWR;iðzÞW i ðinverseÞ ð64Þ
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The auxiliary eigenvalue problems were chosen in order to
satisfy the orthogonality property of the eigenfunctions,
which can be written as

Z 1

dm

~wh1;hðzÞ~wh1;nðzÞdzþ
Z dm

0

~wh2;hðzÞ~wh2;nðzÞdz¼ dhnNh ð65Þ
Z 1

dm

~wW 1;iðzÞ~wW 1;jðzÞdzþ
Z dm

0

~wW 2;iðzÞ~wW 2;jðzÞdz¼ dijN i ð66Þ
where dpq is the Kronecker delta. The normalization inte-
grals are:

Nh ¼
Z 1

dm

~w2
h1;hðzÞdzþ

Z dm

0

~w2
h2;hðzÞdz ð67Þ

Ni ¼
Z 1

dm

~w2
W 1;iðzÞdzþ

Z dm

0

~w2
W 2;iðzÞdz ð68Þ

Eqs. (41) and (43) are operated with
R 1

dm
eT

~wh1;h dz
and

R dm

0
~wh2;h dz, respectively. Using Green’s theorem,

together with boundary conditions (44)–(50) and (53),
and the inversion formulae, the following equation is
obtained:
X1
h¼1

�hh

Z 1

dm

eT
~wh1;h

d2 ~wh1;n

dz2
dzþ

Z dm

0

~wh2;h
d2 ~wh2;n

dz2
dz

 !

� j2
X1
h¼1

�hh

Z 1

dm

eT
~wh1;n

~wh1;hdzþ
Z dm

0

~wh2;n
~wh2;hdz

� �

¼ 1þ d̂

d̂ þ eT

X1
i¼1

W i Prf

Z 1

dm

eT
~wh1;n

~wW 1;idz
�

þeTPrm

Z dm

0

~wh2;n
~wW 2;i dz

�
ð69Þ

Finally, we make use of the auxiliary problem (51)
and (52) and apply the orthogonality property (65), to
obtain:
�b2
n
�hn ¼ j2

X1
h¼1

�hh eTJ
ð1Þ
nh þJ

ð2Þ
nh

� �

þ 1þ d̂

d̂ þ eT

eT

X1
i¼1

W i PrfC
ð1Þ
ni þ PrmC

ð2Þ
ni

� �
ð70Þ
A2X ¼

l4
i dij � 2j2F

ð1Þ
ij � ð2gj2 þ 1=DaÞFð2Þ

ij þ j4E
ð1Þ
ij þ ðgj

� ðj2 � gj2Þ~wW 1;i
d~wW 1;j

dz þ 2j2 � 2gj2 � 1
Da

� 	
~wW 1;j

n
0
B@

1þd̂
d̂þeT

eT PrfC
ð1Þ
nj þ PrmC

ð2Þ
nj

� �

0
BBBBB@

and B2X ¼
0 j2 G

ð1Þ
hi þ G

ð2Þ
hi

� �
0 0

0
@

1
A

where

C
ðRÞ
ni ¼

Z
R

~whR;n
~wWR;i dz ð71Þ

J
ðRÞ
nh ¼

Z
R

~whR;n
~whR;h dz ð72Þ

with R = 1,2.
Following the same procedure, we operate Eqs. (40) and

(42) with
R 1

dm

~wW 1;i dz and
R dm

0
~wW 2;i dz, respectively. Apply-

ing Green’s theorem and making use of the inversion
formulae, the boundary conditions (44)–(50), (60), the
orthogonality property (66), and the auxiliary problems
(58) and (59), provide:

l4
i W i ¼

X1
j¼1

W j 2j2F
ð1Þ
ij þ 2gj2 þ 1

Da

� �
F
ð2Þ
ij � j4E

ð1Þ
ij

�

� gj4 þ j2 1

Da

� �
E
ð2Þ
ij

�
þ j2GrT

X1
h¼1

�hh G
ð1Þ
hi þ G

ð2Þ
hi

� �

þ
X1
j¼1

W j ðj2 � gj2Þ~wW 1;i
d~wW 1;j

dz

(

þ 2j2 � 2gj2 � 1

Da

� �
~wW 1;j

d~wW 1;i

dz

)
z¼dm

ð73Þ

where

E
ðRÞ
ij ¼

Z
R

~wWR;i
~wWR;j dz ð74Þ

F
ðRÞ
ij ¼

Z
R

~wWR;i
d2 ~wWR;j

dz2
dz ð75Þ

G
ðRÞ
hj ¼

Z
R

~whR;h
~wWR;j dz ð76Þ

with R = 1,2.
In matrix form, the system of Eqs. (70) and (73), can be

written as

ðA2X � GrTB2XÞ �n
!
¼ 0 ð77Þ

where GrT is the eigenvalue, and �n
!
¼ fW 1;W 2;

. . . ;W NW ;
�h1; . . . ; �hNh

g is the solution vector. It is important
to remark that, in order to numerically solve the system,
the infinite series were truncated at NW and Nh. Matrices
A2X and B2X are defined as
4 þ j21=DaÞEð2Þij

d ~wW 1;i

dz

o
z¼dm

1
CA 0

b2
ndnh þ j2 eTJ

ð1Þ
nh þJ

ð2Þ
nh

� �

1
CCCCCA
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Fig. 2. Bimodal nature of the stability curve obtained with the present
2XDB model, for d̂ ¼ 0:12 and d = 0.003. The critical values for the first
minimum are �RaTcr;1 ¼ 34:03 and jcr;1 ¼ 2:5; and for the second one,
�RaTcr;2 ¼ 53:87 and jcr;2 ¼ 25:5.
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A2X and B2X are square matrices with (NW + Nh) lines and
columns.

3. The one-domain approach (1X)

3.1. Governing equations

In this section, we briefly recall the one-domain formu-
lation presented in [21]. This description consists of com-
bining the governing equations for the two regions into a
unique set of equations, valid for the entire domain. The
momentum conservation equation is a modified Navier–
Stokes equation, and thus incorporates the Brinkman
extension of Darcy law in the porous medium. As shown
in [21], the dimensionless governing equations valid in the
two regions are:

r � u ¼ 0 ð78Þ
o

ot
u

/

� �
þ 1

/
u � r u

/

� �
¼ �rP � 1

Da
uþ gr2uþ ðGrTT Þez

ð79Þ
ðq0CpÞm
ðq0CpÞf

oT
ot
þ u � rT ¼ 1

PraTf

r:ðaTrT Þ ð80Þ

where aT ¼ aTf in the fluid region and aT ¼ aTm in the por-
ous medium. The momentum Eq. (79) continuously evolves
from the Darcy–Brinkman equation (/ 6¼ 1) in the porous
region, to the Navier–Stokes equation (/ = 1, Da ?1) in
the fluid region.

3.2. Linear stability analysis

In the linear stability analysis, the final system of pertur-
bation equations for the one-domain approach takes the
form:

g
d2

dz2
� j2

� �2

W � 1

/2

d/
dz

� �
d

dz
d2

dz2
� j2

� �
W

þ 1

Da
j2W � 1

Da
d2W
dz2
� d

dz
1

Da

� �
dW
dz
� j2GrTh ¼ 0

ð81Þ
d2

dz2
þ 1

aT

daT

dz
d

dz
� j2

� �
h ¼ Pr

aTf

aT

W ð82Þ

with the following boundary conditions:

W ¼ T ¼ dW
dz
¼ 0; at z ¼ 0; 1 ð83Þ

Eqs. (81)–(83) constitutes an eigenvalue problem in GrT,
for which the GITT solution was presented in detail in [21].

4. Numerical results and discussion

The porous medium is supposed to be isotropic and
homogeneous, and in order to compare our results to pre-
vious works [15,16,18,21], the parameters Pr, eT, and g are
fixed at 10, 0.7, and (1/0.39), respectively. After a conver-
gence analysis of the proposed eigenfunction expansion,
the truncation order was fixed at N = Nh = NW = 100.

The two-domain numerical results are first validated by
comparison with the exact values of the Rayleigh–Bénard
problem. For a full fluid cavity (Da!1, / = 1), the crit-
ical value RaTf ¼ 1707:77 and the corresponding wave
number j = 3.12, agree well with the exact values RaTf ¼
1707:762 and j = 3.117 [26]. For the full porous cavity
(Da = 10�5, d̂ ! 0), the results are RaTm ¼ 39:48 and
j = 3.14, corresponding to a exact solution of RaTm ¼
4p2 � 39:48 and j = p � 3.14 [27]. Let us recall that the
characteristic parameters obtained with our formulation
are the thermal Grashof number GrT, and the Darcy num-
ber Da. Nevertheless, for the sake of comparison with pre-
vious works, the marginal stability curves are presented in
terms of the Rayleigh number RaT, and according to Chen
and Chen [15], the parameter d is fixed at 0.003. This
parameter is actually a combination of Da and the depth
ratio d̂ (d2 ¼ ð1þ d̂Þ2Da).

As already observed by previous authors, the stability
curves can present a bimodal behaviour depending on the
values of the characteristic parameters. Fig. 2 shows the
bimodal nature of the stability curve obtained with the pres-
ent two-domain Darcy–Brinkman model, for d̂ ¼ 0:12.
Each minimum of the curve correspond to a different mode
of natural convection. A ‘‘fluid mode” (corresponding to
perturbations of large wave numbers), where the convective
flow is mainly confined in the fluid layer; and a ‘‘porous
mode” (corresponding to perturbations of small wave num-
bers), where the convective flow occurs in the entire porous
region. In order to illustrate these two modes, the streamline
patterns obtained for j = 25.5 and j = 2.5 are shown in



Fig. 4. Streamline patterns at the onset of convection for d = 0.003,
d̂ ¼ 0:12, and j = 2.5, obtained with the 2XDB model (Wmax ¼ �0:4386;
DW = 0.0627). The thick horizontal line represents the fluid/porous
interface.
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Figs. 3 and 4, respectively. In Fig. 3, a perturbation of large
wave number is introduced, resulting in convection cells
mainly confined in the fluid layer with some flow penetra-
tion in the upper region of the porous layer. Fig. 4 shows
the convection pattern obtained for a perturbation of small
wave number, corresponding to a large wavelength. In this
case, fluid motion is present in the entire porous layer.

Figs. 5–8 show a comparison of the marginal stability
curves for four values of d̂ at a fixed value of d
(d = 0.003), obtained with the different models, namely:
the one-domain approach (1X) [21]; the two-domain
approach using Darcy’s formulation (2XD) [16] for differ-
ent values of the adjustable slip coefficient a; and the pres-
ent two-domain approach using Brinkman’s formulation
(2XDB). Let us remark that the 2XD curves were obtained
by Carr and Straughan [16], who adopted a equation of
state which expresses the fluid density as a quadratic func-
tion of temperature. For all values of d̂, it may be noticed
that the 2XDB curves are located between the curves
obtained using the 2XD model, for a = 1 and a = 4. The
stability curves obtained using the 1X model present a quite
different behaviour. These results show that the Brinkman
term does not play a crucial role in the stability of the
system for these values of the Darcy number. As a conse-
quence, it may be induced that the discrepancies are due
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Fig. 3. Streamline patterns at the onset of convection for d = 0.003,
d̂ ¼ 0:12, and j = 25.5, obtained with the 2XDB model (Wmax ¼ �0:166;
DW = 0.02). The thick horizontal line represents the fluid/porous
interface.
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Fig. 5. Marginal stability curves obtained with models 1X [21], 2XD [16],
and 2XDB (present work), for d̂ ¼ 0:08 and d = 0.003 (or Da =
7.72 � 10�6).
to the different mathematical formulation used in one-
and two-domain approaches.

As shown in [21], our 1X curves present a good agree-
ment with the results of Zhao and Chen [18]. In this work,
the authors claim a qualitative agreement for the one- and
two-domain approaches. Nevertheless, the comparison
only concerns the critical values, and not the entire stability
curves. They do not mention such important discrepancies
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Fig. 8. Marginal stability curves obtained with models 1X [21], 2XD [16],
and 2XDB (present work), for d̂ ¼ 0:14 and d = 0.003 (or Da =
6.93 � 10�6).

Table 1
Critical Rayleigh numbers and corresponding wave numbers for the stability

Model d̂ ¼ 0:08 d̂ ¼ 0:10

jcr �RaTcr jcr �R

1X 3.0 54.42 3.5 46.5
2XDB 2.5 36.55 2.5 35.1
2XD, a = 0.1 2.4 35.91 2.3 34.8
2XD, a = 1 2.4 36.30 2.4 34.9
2XD, a = 4 2.4 36.37 2.4 34.9
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Fig. 6. Marginal stability curves obtained with models 1X [21], 2XD [16],
and 2XDB (present work), for d̂ ¼ 0:10 and d = 0.003 (or Da =
7.44 � 10�6).
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Fig. 7. Marginal stability curves obtained with models 1X [21], 2XD [16],
and 2XDB (present work), for d̂ ¼ 0:12 and d = 0.003 (or Da =
7.17 � 10�6).
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as those displayed in Figs. 5–8 for large values of j. The
critical Rayleigh numbers and the associated wave num-
bers for the stability curves in Figs. 5–8 are shown in Table
1. For all values of d̂ studied, the 2XDB and 2XD curves are
bimodal. If one now considers the curves obtained using
the 1X approach, they also present a bimodal behaviour
for d̂ ¼ 0:08 and d̂ ¼ 0:10, but not for d̂ ¼ 0:12 and
d̂ ¼ 0:14, which present only one minimum (Figs. 7 and
8). We can observe an important change in the critical wave
number of the 1X curves between d̂ ¼ 0:10 and d̂ ¼ 0:12
(see Table 1), which corresponds to the change of the crit-
ical convection mode. For the 2XDB and 2XD curves, the
mode switching occurs between d̂ ¼ 0:12 and d̂ ¼ 0:14.

The 2XD model requires the specification of the empiri-
cal slip parameter a in the Beavers and Joseph boundary
condition (Eq. (1)). Contrarily to the findings of Carr
and Straughan [16], Chen and Chen [15] mention that their
solution ‘‘is quite insensitive to a”. As shown in Figs. 5–8,
this remark is relevant only for small values of the wave
number j, corresponding to the first minimum of the
curves. In the 2XDB model, on the contrary, there is no
adjustable parameter, and therefore only one stability
curves in Figs. 5–8

d̂ ¼ 0:12 d̂ ¼ 0:14

aTcr jcr �RaTcr jcr �RaTcr

5 13.5 22.19 12.0 12.73
5 2.5 34.03 22.0 31.09
1 2.4 33.82 20.5 23.96
1 2.4 33.81 22.5 30.45
3 2.4 33.91 22.5 31.96
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curve is provided. For the porous mode of instability (first
minimum of the curves), all the two-domain curves predict
the same critical conditions. This means that when the
onset of convective motion occurs within the porous layer,
the upper interfacial condition does not play an important
role. Concerning the fluid mode of instability, the 2XDB

curve is systematically located between the 2XD curves
for a = 1 and a = 4. A possible explanation for this fact
can be found in the value adopted for the reduced viscosity
g. It has been shown that, for one-dimensional flows, the
2XDB analytical solution is similar to the 2XD solution by
Beavers and Joseph provided that a ¼ ffiffiffi

g
p

[9]. This is con-
sistent with our results since the porosity of the porous
medium (/ = 0.39) is such that

ffiffiffi
g
p ffi 1:6 lies between 1

and 4.
Fig. 9 shows the stability curves obtained with 1X and

2XDB models, for different values of the Darcy number
Da and fixed d̂ ¼ 0:08. We observe that the models present
a better agreement with increasing values of Da. For
Da P 10�4, the stability curves present only one minimum,
corresponding to the porous convection mode. For Da =
10�5, the curves are found to be bimodal, and it can be
observed that the 1X and 2XDB stability curves present lar-
ger discrepancies in the region corresponding to the fluid
convection mode (large wave numbers). It was verified that
for Da 6 10�8, there is no penetrating flow, i.e. the porous
medium behaves as a solid matrix and convective motion
occurs only in the fluid layer.

The fundamental mathematical difference between the
one- and two-domain approaches is the treatment of the
interface. For this reason, it seems important to analyze
the influence of the interfacial boundary conditions. First,
instead of imposing the continuity of normal stress, the
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Fig. 9. Marginal stability curves for different values of the Darcy number
and d̂ ¼ 0:08, obtained with models 1X [21] and 2XDB (present work).
continuity of pressure was imposed at the interface. Under
these circumstances, Eq. (49) is replaced by

� d3W
dz3
þ j2 dW

dz
¼ 1

Da
dW m

dz
� g

d3W m

dz3
� j2 dW m

dz

� �
ð84Þ

Eq. (84) differs from Eq. (49) by a factor 3 in the j2 terms.
The stability curves using the normal stress and the pres-
sure boundary conditions (Eqs. (49) and (84), respectively)
are nearly superposed (see Fig. 10), indicating that those
terms do not influence the behaviour of the curves and
the two boundary conditions are equivalent.

Let us now focus our attention on the first term of the
right-hand side of Eq. (49). In order to investigate its influ-
ence, it was first assumed 1/Da = 0 at the interface, i.e.:

� d3W
dz3
þ 3j2 dW

dz
¼ �g

d3W m

dz3
� 3j2 dW m

dz

� �
ð85Þ

The marginal stability curve obtained using the above
boundary condition is also shown in Fig. 10. In fact, it
can be observed that the absence of the 1

Da
dW m

dz term in
the boundary condition significantly influences the behav-
iour of the stability curve, which becomes very close to
the 1X curve. This explains why the discrepancies between
one- and two-domain models depend not only on the value
of Da, but also on the convection mode. Indeed, analyzing
the velocity profiles of the fluid and the porous convection
modes of the 2XDB model (Fig. 11), it can be observed that
the vertical velocity gradient at the interface is much great-
er in the fluid mode. As the velocity gradient multiplies the
1/Da term of the normal stress boundary condition, it leads
to larger discrepancies of the stability curves on the fluid
convection mode.
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Eq. (85)), and d̂ ¼ 0:08 and d = 0.003.
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The above conclusion may also explain the fact that
some authors [12,20] have found the results of direct simu-
lations of one- and two-domain approaches to be equiva-
lent. Goyeau et al. [12] studied the momentum balance at
the interface of a two-layer system, but for a one-dimen-
sional tangential flow (where no normal stress interfacial
condition is required). Le Bars and Worster [20] studied
the particular case of a corner flow. They imposed continu-
ity of velocities, tangential stress, and pressure across the
interface. Nevertheless, the vertical velocity gradient on
the interface for this configuration seems to be very small,
which would explain the agreement found between one-
and two-domain results. The study of bi-dimensional flows
of higher intensity seems necessary for the understanding of
the differences between one- and two-domain approaches,
in the context of direct numerical simulations.
5. Conclusions

A linear stability analysis of thermal natural convection
in superposed fluid and porous layers has been carried out,
using a Brinkman-extended two-domain model (2XDB).
The results are compared with those obtained using the
classical Darcy’s formulation of the two-domain model
(2XD) [16], and with the results of the one-domain model
(1X) [21].

The marginal stability curves of the 2XDB model present
better agreement with the 2XD curves than with those of
the 1X approach, indicating that the mathematical formu-
lation has a great influence on the stability results, while the
inclusion of the Brinkman term plays a secondary role. The
main mathematical aspect responsible for the discrepancies
of the marginal stability curves was found to be the differ-
ent treatment of the interfacial conditions, more specifically
in the continuity of normal stress condition. Although this
work emphasizes some of the differences between one- and
two-domain approaches, the question of the more relevant
model still remains open, and more numerical simulations
and experiments are needed.
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